Phosphatidylinositol (4,5) Bisphosphate Controls T Cell Activation by Regulating T Cell Rigidity and Organization
نویسندگان
چکیده
Here we investigate the role of Phosphatidylinositol (4,5) bisphosphate (PIP(2)) in the physiological activation of primary murine T cells by antigen presenting cells (APC) by addressing two principal challenges in PIP(2) biology. First, PIP(2) is a regulator of cytoskeletal dynamics and a substrate for second messenger generation. The relative importance of these two processes needs to be determined. Second, PIP(2) is turned over by multiple biosynthetic and metabolizing enzymes. The joint effect of these enzymes on PIP(2) distributions needs to be determined with resolution in time and space. We found that T cells express four isoforms of the principal PIP(2)-generating enzyme phosphatidylinositol 4-phosphate 5-kinase (PIP5K) with distinct spatial and temporal characteristics. In the context of a larger systems analysis of T cell signaling, these data identify the T cell/APC interface and the T cell distal pole as sites of differential PIP(2) turnover. Overexpression of different PIP5K isoforms, as corroborated by knock down and PIP(2) blockade, yielded an increase in PIP(2) levels combined with isoform-specific changes in the spatiotemporal distributions of accessible PIP(2). It rigidified the T cell, likely by impairing the inactivation of Ezrin Moesin Radixin, delayed and diminished the clustering of the T cell receptor at the cellular interface, reduced the efficiency of T cell proximal signaling and IL-2 secretion. These effects were consistently more severe for distal PIP5K isoforms. Thus spatially constrained cytoskeletal roles of PIP(2) in the control of T cell rigidity and spatiotemporal organization dominate the effects of PIP(2) on T cell activation.
منابع مشابه
Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate
During the late stages of the HIV-1 replication cycle, the viral polyprotein Pr55(Gag) is recruited to the plasma membrane (PM), where it binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and directs HIV-1 assembly. We show that Rab27a controls the trafficking of late endosomes carrying phosphatidylinositol 4-kinase type 2 α (PI4KIIα) toward the PM of CD4(+) T cells. Hence, Rab27a promote...
متن کاملPhosphatidylinositol 4-Phosphate 5-Kinases in the Regulation of T Cell Activation
Phosphatidylinositol 4,5-biphosphate kinases (PIP5Ks) are critical regulators of T cell activation being the main enzymes involved in the synthesis of phosphatidylinositol 4,5-biphosphate (PIP2). PIP2 is indeed a pivotal regulator of the actin cytoskeleton, thus controlling T cell polarization and migration, stable adhesion to antigen-presenting cells, spatial organization of the immunological ...
متن کاملCofilin: a redox sensitive mediator of actin dynamics during T-cell activation and migration
Cofilin is an actin-binding protein that depolymerizes and/or severs actin filaments. This dual function of cofilin makes it one of the major regulators of actin dynamics important for T-cell activation and migration. The activity of cofilin is spatio-temporally regulated. Its main control mechanisms comprise a molecular toolbox of phospho-, phospholipid, and redox regulation. Phosphorylated co...
متن کاملb-Catenin Inhibits T Cell Activation by Selective Interference with Linker for Activation of T Cells–Phospholipase C-g1 Phosphorylation
متن کامل
The LIM protein Ajuba regulates phosphatidylinositol 4,5-bisphosphate levels in migrating cells through an interaction with and activation of PIPKI alpha.
The phosphoinositide phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] regulates the activity of many actin-binding proteins and as such is an important modulator of cytoskeleton organization during cell migration, for example. In migrating cells actin remodeling is tightly regulated and localized; therefore, how the PI(4,5)P2 level is spatially and temporally regulated is crucial to understand...
متن کامل